Nhiệt động lực học, tự cấu tạo và thông tin: Vật lý học Phát sinh phi sinh học

Nguyên lý nhiệt động lực học: Năng lượng và entropy

Chẳng hạn, trong thời cổ đại, Empedocles và Aristotle thường nghĩ rằng sự sống của các cá thể của một số loài, và nói chung là sự sống của chính nó, có thể bắt đầu với nhiệt độ cao, tức là hoàn toàn bằng chu kỳ nhiệt.[298]

Tương tự, nó đã được nhận ra  ngay từ đầu là sự sống đòi hỏi sự mất entropy, hay còn gọi là mất trật tự, khi các phân tử tự tổ chức thành vật chất sống. Định luật thứ hai của nhiệt động lực học này cần được xem xét khi sự tự tổ chức của vật chất ở mức độ phức tạp cao hơn xảy ra. Bởi vì cơ thể sống là máy móc,[299] Luật thứ hai cũng áp dụng cho sự sống.

Do đó, trái với quan điểm ngây thơ về Định luật thứ hai, sự xuất hiện của sự sống và sự phức tạp gia tăng không mâu thuẫn với quy luật này: Thứ nhất, một sinh vật sống tạo ra trật tự ở một số nơi (ví dụ như cơ thể sống hoặc nơi ở của nó) với phí tổn là sự gia tăng entropy ở nơi khác (ví dụ như sản xuất nhiệt và chất thải). Thứ hai, Định luật thứ hai của nhiệt động lực học thực sự dự đoán sự gia tăng độ phức tạp[300] và các mối tương quan giữa một hệ thống và môi trường xung quanh nó, khi trải qua sự tương tác[301] – với trí nhớ và sự thích nghi di truyền là những ví dụ về mối tương quan như vậy giữa một sinh vật sống và môi trường của nó.

Thu nhận năng lượng miễn phí

Bernal đã nói trong thí nghiệm Miller–Urey rằng

Nó không đủ để giải thích sự hình thành của các phân tử như vậy, điều cần thiết là giải thích vật lý-hóa học về nguồn gốc của các phân tử này gợi ý sự hiện diện của các nguồn thích hợp và chìm cho năng lượng tự do.[302]

Nhiều nguồn năng lượng có sẵn cho các phản ứng hóa học trên Trái Đất sơ khai. Ví dụ, nhiệt (chẳng hạn như từ các quá trình địa nhiệt) là một nguồn năng lượng tiêu chuẩn cho hóa học. Các ví dụ khác bao gồm ánh sáng mặt trời và phóng điện (sét), trong số những người khác.[303] Trên thực tế, sét là một nguồn năng lượng hợp lý cho nguồn gốc của sự sống, vì chỉ ở vùng nhiệt đới, sét đánh khoảng 100 triệu lần một năm.[304]

Các mô phỏng trên máy tính cũng cho thấy rằng sự xâm thực trong các hồ chứa nước nguyên thủy như phá sóng biển, suối và đại dương có thể dẫn đến sự tổng hợp các hợp chất sinh học.[305]

Các phản ứng không thuận lợi cũng có thể được thúc đẩy bởi các phản ứng thuận lợi cao, như trong trường hợp hóa học sắt-lưu huỳnh. Ví dụ, điều này có lẽ rất quan trọng đối với quá trình cố định carbon (sự chuyển đổi carbon từ dạng vô cơ thành dạng hữu cơ). [lower-alpha 3] Sự cố định carbon bằng phản ứng của CO 2 với H 2 S thông qua hóa học sắt-lưu huỳnh là thuận lợi, và xảy ra ở pH trung tính và 100 °C. Bề mặt sắt-lưu huỳnh, có nhiều gần các miệng phun thủy nhiệt, cũng có khả năng tạo ra một lượng nhỏ amino acid và các chất chuyển hóa sinh học khác.[306]

Tự tổ chức

Hermann Haken

Nguyên tắc nghiên cứu synergetics sự tự tổ chức trong các hệ thống vật chất. Trong cuốn sách Synergetics[307] Hermann Haken đã chỉ ra rằng các hệ thống vật lý khác nhau có thể được xử lý theo cách tương tự. Ông đưa ra các ví dụ về sự tự tổ chức của một số loại laser, sự bất ổn định trong động lực học chất lỏng, bao gồm đối lưu, và các dao động hóa học và sinh hóa. Trong lời nói đầu của mình, ông đề cập đến nguồn gốc của sự sống, nhưng chỉ nói chung chung:

Sự hình thành tự phát của các cấu trúc có tổ chức tốt từ vi trùng hoặc thậm chí từ hỗn loạn là một trong những hiện tượng hấp dẫn nhất và là vấn đề thách thức nhất mà các nhà khoa học phải đối mặt. Những hiện tượng như vậy là một kinh nghiệm trong cuộc sống hàng ngày của chúng tôi khi chúng tôi quan sát sự phát triển của thực vật và động vật. Suy nghĩ về các thang thời gian lớn hơn nhiều, các nhà khoa học được dẫn dắt vào các vấn đề của sự tiến hóa, và cuối cùng là về nguồn gốc của vật chất sống. Khi chúng ta cố gắng giải thích hoặc hiểu theo một nghĩa nào đó những hiện tượng sinh học cực kỳ phức tạp này thì đó là một câu hỏi tự nhiên, liệu các quá trình tự tổ chức có thể được tìm thấy trong các hệ thống đơn giản hơn nhiều của thế giới thống nhất hay không.Trong những năm gần đây, người ta ngày càng thấy rõ rằng tồn tại rất nhiều ví dụ trong các hệ thống vật lý và hóa học, nơi các cấu trúc không gian, thời gian hoặc không gian được tổ chức tốt phát sinh từ các trạng thái hỗn loạn. Hơn nữa, cũng như trong các cơ thể sống, hoạt động của các hệ thống này chỉ có thể được duy trì bởi một dòng năng lượng (và vật chất) xuyên suốt qua chúng. Trái ngược với những cỗ máy do con người tạo ra, được thiết kế để thể hiện những cấu trúc và chức năng đặc biệt, những cấu trúc này phát triển một cách tự phát – chúng tự tổ chức...[308]

Cấu trúc phân tán

Lý thuyết này giả định rằng dấu hiệu của nguồn gốc và sự tiến hóa của sự sống là cấu trúc phân tán cực nhỏ dưới ánh sáng UVC của các sắc tố hữu cơ và sự sinh sôi của chúng trên toàn bộ bề mặt Trái Đất.[309][310][311] Cuộc sống ngày nay làm tăng sản lượng entropi của Trái Đất trong môi trường Mặt trời bằng cách phân tán tia cực tímphoton nhìn thấy thành nhiệt thông qua các sắc tố hữu cơ trong nước. Nhiệt này sau đó xúc tác cho một loạt các quá trình tiêu tán thứ cấp như chu trình nước, các dòng hải lưu và gió, bão, v.v.[312]

Tự tổ chức bằng các cấu trúc phân tán

Ilya Prigogine 1977c

Nhà vật lý thế kỷ 19 Ludwig Boltzmann lần đầu tiên công nhận rằng cuộc đấu tranh cho sự tồn tại của các sinh vật sống không phải là vật liệu thô hay năng lượng, mà thay vào đó là sự sản sinh entropy có nguồn gốc từ sự chuyển đổi quang phổ mặt trời thành nhiệt bởi các hệ thống này.[313] Do đó, Boltzmann nhận ra rằng các hệ thống sống, giống như tất cả các quá trình không thể đảo ngược, phụ thuộc vào sự tiêu tán của một tiềm năng hóa học tổng quát cho sự tồn tại của chúng. Trong cuốn sách "Sự sống là gì", nhà vật lý thế kỷ 20 Erwin Schrödinger[314] nhấn mạnh tầm quan trọng của cái nhìn sâu sắc của Boltzmann về bản chất nhiệt động lực học không thể đảo ngược của các hệ thống sống, cho thấy rằng đây là vật lý và hóa học đằng sau nguồn gốc và sự tiến hóa của sự sống.

Tuy nhiên, các quá trình không thể đảo ngược và các hệ thống sống ít hơn nhiều, không thể được phân tích thuận tiện dưới góc độ này cho đến khi Lars Onsager,[315] và sau đó là Ilya Prigogine,[316] phát triển một chủ nghĩa hình thức toán học thanh lịch để xử lý "sự tự tổ chức" của vật chất dưới một tiềm năng hóa học tổng quát. Chủ nghĩa hình thức này được gọi là Nhiệt động lực học không thể đảo ngược cổ điển và Prigogine được trao giải Nobel Hóa học năm 1977 "vì những đóng góp của ông cho nhiệt động lực học không cân bằng, đặc biệt là lý thuyết về cấu trúc tiêu tán ". Phân tích của Prigogine cho thấy rằng nếu một hệ thống được để phát triển dưới một tiềm năng bên ngoài áp đặt, vật chất có thể tự tổ chức (giảm entropi của nó) tạo thành cái mà ông gọi là "cấu trúc tiêu tán", điều này sẽ làm tăng sự tiêu tán của tiềm năng áp đặt bên ngoài (tăng cường toàn cầu sản xuất entropy). Nhiệt động lực học không cân bằng kể từ đó đã được áp dụng thành công vào việc phân tích các hệ thống sống, từ sản xuất sinh hóa ATP[317] đến tối ưu hóa các con đường trao đổi chất của vi khuẩn[318] để hoàn thiện hệ sinh thái.[319][320][321]

Tài liệu tham khảo

WikiPedia: Phát sinh phi sinh học http://www.biocommunication.at/pdf/publications/bi... http://www.abc.net.au/news/2008-06-14/we-may-all-b... http://popups.ulg.ac.be/0037-9565/index.php?id=462... http://wwwdca.iag.usp.br/www/material/fornaro/ACA4... http://www.cbc.ca/news/technology/oldest-record-li... http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=... http://discovermagazine.com/2004/jun/cover http://discovermagazine.com/2008/feb/did-life-evol... http://blogs.discovermagazine.com/cosmicvariance/2... http://news.discovery.com/earth/oceans/life-pond-o...